jueves, 13 de agosto de 2015

REFERENCIAS BIBLIOGRÁFICAS









IMPORTANCIA FARMACÉUTICA



A diferencia de otros usos industriales para las enzimas, las aplicaciones médicas y farmacéuticas de las mismas requieren generalmente pequeñas cantidades de enzimas muy purificadas. Esto se debe a que si el destino de una enzima o de un producto obtenido por métodos enzimáticos es su administración a un paciente, resulta evidente que el preparado debe contener las menores cantidades posibles de material extraño para evitar probables efectos secundarios.



Uno de los productos obtenidos mediante el uso de enzimas son los aminoácidos. Si bien se pueden sintetizar empleando un proceso químico, el resultado es una mezcla de dos tipos distintos (D y L isómeros). Puesto que solamente el L-isómero es biológicamente activo, la mezcla debe ser separada en sus dos componentes. 


Además de aminoácidos, las enzimas son utilizadas para la producción de antibióticos semi-sintéticos. Las penicilinas semisintéticas son los principales productos farmacéuticos obtenidos por tecnología enzimática. 

También se utilizan enzimas en la producción de esteroides. Los esteroides se utilizan en un gran número de preparados farmacéuticos (por ejemplo en los antinflamatorios), por lo que los procesos empleados en la producción de estas sustancias presentan una considerable importancia económica.



Enzimas Pancreáticas.





Una administración oral de 
enzimas pancreáticas, convenientemente protegidas para evitar su desnaturalización por la acidez del estómago, ayuda a desarrollar una digestión normal y, en consecuencia una nutrición adecuada.

IMPORTANCIA BIOLÓGICA

Es extraordinaria y radica en varias de sus particulares propiedades:


- Actúan a muy bajas concentraciones (10-3 a 10-6 moles de enzima/mol de sustrato).

- No se consumen en las reacciones.

- No modifican el equilibrio del sistema de reacción, sino que sólo influyen sobre la velocidad con que se alcanza tal equilibrio (aumentan la velocidad hasta 106 veces).

- Son muy específicas de los sustratos, grupos o enlaces químicos sobre los que actúan.

- Actúan siempre a la temperatura del ser vivo.

Proteína Globular
Energía
- Presentan un peso molecular elevado, porque son proteínas globulares (solubles en agua, que se difunden muy bien en los líquidos orgánicos).


- Su intervención es causa de un notable ahorro energético para las células.

ACTIVIDAD ENZIMÁTICA



La sustancia sobre la cual actúa una enzima se llama sustrato.
Los sustratos son específicos para cada enzima:
La sacarosa es el sustrato de la sacarasa que actúa rompiéndola en sus componentes.

Las enzimas actúan de acuerdo con la siguiente secuencia: La enzima (E) y el sustrato
(S) se combinan para formar un complejo intermedio enzima sustrato (E-S), el cual se descompone formando un producto y regenerando la enzima.

El grado de especificidad de las enzimas es muy alto, pueden distinguir incluso entre diferentes tipos de isómeros. Se cree que la especificidad de la enzima es debido a la forma particular de una pequeña parte conocida como sitio activo, la cual se fija a la contraparte complementaria en el sustrato.


FACTORES QUE AFECTAN LA ACTIVIDAD ENZIMÁTICA


Gráficas de variación de actividad enzimática, respecto a temperatura y pH.


- Concentración del sustrato.- A mayor concentración del sustrato, a una concentración fija de la enzima se obtiene la velocidad máxima. Después de que se alcanza esta velocidad, un aumento en la concentración del sustrato no tiene efecto en la velocidad de la reacción.

- Concentración de la enzima.- Siempre y cuando haya sustrato disponible, un aumento en la concentración de la enzima aumenta la velocidad enzimática hacia cierto límite.

- Temperatura.- Un incremento de 10°C duplica la velocidad de reacción, hasta ciertos límites. El calor es un factor que desnaturaliza las proteínas por lo tanto si la temperatura se eleva demasiada, la enzima pierde su actividad.

- pH.- El pH óptimo de la actividad enzimática es 7, excepto las enzimas del estómago cuyo pH óptimo es ácido.

- Presencia de cofactores.- Muchas enzimas dependen de los cofactores, sean activadores o coenzimas para funcionar adecuadamente. Para las enzimas que tienen cofactores, la concentración del cofactor debe ser igual o mayor que la concentración de la enzima para obtener una actividad catalítica máxima.

CLASIFICACIÓN

1) CLASIFICACIÓN DE LAS ENZIMAS DE ACUERDO A SU COMPLEJIDAD

De acuerdo a su complejidad las enzimas se clasifican como:



En las proteínas conjugadas podemos distinguir dos partes:
Apoenzima: Es la parte polipeptídica de la enzima.
Cofactor: Es la parte no proteica de la enzima.



La combinación de la apoenzima y el cofactor forman la holoenzima.
Los cofactores pueden ser:
*Iones metálicos: Favorecen la actividad catalítica general de la enzima, si no están presentes, la enzima no actúa. Estos iones metálicos se denominanactivadores. Ejemplos: Fe2+, Mg2+, Cu2+, K+, Na+ y Zn2+
*La mayoría de los otros cofactores son coenzimas las cuales generalmente son compuestos orgánicos de bajo peso molecular, por ejemplo, las vitaminas del complejo “B” son coenzimas que se requieren para una respiración celular adecuada.


2) CLASIFICACIÓN DE LAS ENZIMAS SEGÚN SU ACTIVIDAD.




Tipo de enzimas
Actividad
Hidrolasas
Catalizan reacciones de hidrólisis. Rompen las biomoléculas con moléculas de agua. A este tipo pertenecen las enzimas digestivas.
Isomerasas
Catalizan las reacciones en las cuales un isómero se transforma en otro, es decir, reacciones de isomerización.
Ligasas
Catalizan la unión de moléculas.
Liasas
Catalizan las reacciones de adición de enlaces o eliminación, para producir dobles enlaces.
Oxidorreductasas
Catalizan reacciones de óxido-reducción. Facilitan latransferencia de electrones de una molécula a otra. Ejemplo; la glucosa, oxidasa cataliza la oxidación de glucosa a ácido glucónico.
Tansferasas
Catalizan la transferencia de un grupo de una sustancia a otra. Ejemplo: la transmetilasa es una enzima que cataliza la transferencia de un grupo metilo de una molécula a otra.

PROPIEDADES

Las propiedades de los enzimas derivan del hecho de ser proteínas y de actuar como catalizadores. Como proteínas, poseen una conformación natural más estable que las demás conformaciones posibles. Así, cambios en la conformación suelen ir asociados en cambios en la actividad catalítica. Los factores que influyen de manera más directa sobre la actividad de un enzima son:

EFECTO DEL pH SOBRE LA ACTIVIDAD ENZIMÁTICA

Los enzimas poseen grupos químicos ionizables (carboxilos -COOH; amino -NH2; tiol -SH; imidazol, etc.) en las cadenas laterales de sus aminoácidos. Según el pH del medio, estos grupos pueden tener carga eléctrica positiva, negativa o neutra. Como la conformación de las proteínas depende, en parte, de sus cargas eléctricas, habrá un pH en el cual la conformación será la más adecuada para la actividad catalítica. Este es el llamado pH óptimo. 



La mayoría de los enzimas son muy sensibles a los cambios de pH. Desviaciones de pocas décimas por encima o por debajo del pH óptimo pueden afectar drásticamente su actividad. Así, la pepsina gástrica tiene un pH óptimo de 2, la ureasa lo tiene a pH 7 y la arginasa lo tiene a pH 10 (Figura de la izquierda). Como ligeros cambios del pH pueden provocar la desnaturalización de la proteína, los seres vivos han desarrollado sistemas más o menos complejos para mantener estable el pH intracelular: Los amortiguadores fisiológicos.

EFECTO DE LA TEMPERATURA SOBRE LA ACTIVIDAD ENZIMÁTICA


En general, los aumentos de temperatura aceleran las reacciones químicas: por cada 10ºC de incremento, la velocidad de reacción se duplica. Las reacciones catalizadas por enzimas siguen esta ley general. Sin embargo, al ser proteínas, a partir de cierta temperatura, se empiezan a desnaturalizar por el calor. La temperatura a la cual la actividad catalítica es máxima se llamatemperatura óptima (Figura de la derecha). Por encima de esta temperatura, el aumento de velocidad de la reacción debido a la temperatura es contrarrestado por la pérdida de actividad catalítica debida a la desnaturalización térmica, y la actividad enzimática decrece rápidamente hasta anularse.


EFECTO DE LOS COFACTORES SOBRE LA ACTIVIDAD ENZIMÁTICA


A veces, un enzima requiere para su función la presencia de sustancias no proteicas que colaboran en la catálisis: los cofactores. Los cofactores pueden ser iones inorgánicos como el Fe++, Mg++, Mn++, Zn++ etc. Casi un tercio de los enzimas conocidos requieren cofactores. Cuando el cofactor es una molécula orgánica se llama coenzima. Muchos de estos coenzimas se sintetizan a partir de vitaminas. En la figura inferior podemos observar una molécula de hemoglobina (proteína que transporta oxígeno) y su coenzima (el grupo hemo). Cuando los cofactores y las coenzimas se encuentran unidos covalentemente al enzima se llaman grupos prostéticos. La forma catalíticamente activa del enzima, es decir, el enzima unida a su grupo prostético, se llama holoenzima. La parte proteica de un holoenzima (inactiva) se llama apoenzima, de forma que:

apoenzima + grupo prostético= holoenzima

GENERALIDADES

Prácticamente todas las reacciones químicas que tienen lugar en los seres vivos están catalizadas por enzimas. Los enzimas son catalizadores específicos: cada enzima cataliza un solo tipo de reacción, y casi siempre actúa sobre un único sustrato o sobre un grupo muy reducido de ellos. En una reacción catalizada por un enzima:
La sustancia sobre la que actúa el enzima se llama sustrato.
El sustrato se une a una región concreta del enzima, llamada centro activo. El centro activo comprende (1) un sitio de unión formado por los aminoácidos que están en contacto directo con el sustrato y (2) un sitio catalítico, formado por los aminoácidos directamente implicados en el mecanismo de la reacción
Una vez formados los productos el enzima puede comenzar un nuevo ciclo de reacción

1.- El enzima y su sustrato
2.- Unión al centro activo
3.- Formación de productos

Los enzimas, a diferencia de los catalizadores inorgánicos catalizan reacciones específicas. Sin embargo hay distintos grados de especificidad. El enzima sacarasa es muy específico: rompe el enlace b-glucosídico de la sacarosa o de compuestos muy similares. Así, para el enzima sacarasa, la sacarosa es su sustrato natural, mientras que la maltosa y la isomaltosa son sustratos análogos. El enzima actúa con máxima eficacia sobre el sustrato natural y con menor eficacia sobre los sustratos análogos. Entre los enzimas poco específicos están las proteasas digestivas como la quimotripsina, que rompe los enlaces amida de proteínas y péptidos de muy diverso tipo.

¿QUÉ ES UNA ENZIMA?

Una enzima es una proteína que cataliza (es decir, es una sustancia que, sin consumirse en una reacción, aumentan notablemente su velocidad) las reacciones bioquímicas del metabolismo. Las enzimas actúan sobre las moléculas conocidas como sustratos y permiten el desarrollo de los diversos procesos celulares. Ello hace posible que en condiciones fisiológicas tengan lugar reacciones que sin catalizador requerirían condiciones extremas de presión, temperatura o pH.
Enzima Triosafosfato Isomerasa
Es importante determinar además de todo lo expuesto que las enzimas se caracterizan por contar con una serie de señas de identidad propias que las determinan en todos y cada uno de sus aspectos. En este sentido podemos exponer, por ejemplo, que poseen la capacidad para contar con unos tamaños muy diferentes de tal modo que hay desde las que tienen 2.500 aminoácidos hasta las que, sin embargo, rondan los 50.

Y además poseen elementos fundamentales para su funcionamiento tales como el centro activo o la cadena de aminoácidos, entre otros muchos más.

Es importante destacar que las enzimas no modifican el balance energético ni el equilibrio de aquellas reacciones en las que intervienen: su función se limita a ayudar a acelerar el proceso. Esto quiere decir que la reacción bajo el control de una enzima alcanza su equilibrio de manera mucho más rápida que una reacción no catalizada.

Se estima que las enzimas catalizan cerca de 4.000 reacciones bioquímicas diferentes. Existen distintas moléculas que afectan la actividad de las enzimas. Se conoce como inhibidor enzimático, por ejemplo, a la molécula que impide la actividad de la enzima o que disminuye su efecto. Existen fármacos y drogas que actúan como inhibidores. Los activadores enzimáticos, en cambio, incrementan su actividad. Hay que tener en cuenta que el pH, la temperatura y otros factores físicos y químicos inciden en la actividad enzimática.

Cada enzima, en particular, afecta a su sustrato específico. La especificidad de las enzimas es posible debido a su estructura, que les permite unirse sólo a ciertos sustratos.

Cada enzima tiene una forma tridimensional característica con una configuración especial en su superficie.
Las enzimas son eficientes en extremo. En condiciones óptimas, pueden catalizar reacciones que van de 108 a 1010 (más de 10 billones de veces) más rápido que las reacciones equiparables que se presentan sin las enzimas.

En el gran número de moléculas presentes en una célula, una enzima debe encontrar el sustrato correcto, además muchas de las reacciones se generan en un ambiente acuoso y a temperaturas relativamente bajas, lo cual no favorece el movimiento rápido de las moléculas. 

Por lo general, los nombres de las enzimas terminan con el sufijo asa, dependiendo de su función, así existen, por ejemplo; transferasas, oxidasas, hidrolasas, etc.


Algunas enzimas están formadas por completo de proteínas. Sin embargo, la mayor parte de las enzimas contienen una proteína que se llama apoenzima, que es inactiva sin un componente no proteíco llamado cofactor. Juntos, la apoenzima y el cofactor forman la holoenzima activada o enzima completa. El cofactor puede ser un ión metálico.